Journal of Mountain Science

Anthropogenic disturbances and their impact on vegetation in Western Himalaya, India

Abstract The present study assesses anthropogenic disturbances and their impacts on the vegetation in Western Himalaya, India on the basis of various disturbance parameters such as density, Total Basal Cover (TBC) of cut stumps, lopping percentage and grazing intensities. On the basis of canopy cover and frequency of disturbances (%), the studied forests were divided into highly disturbed (HD), moderately disturbed (MD) and least disturbed (LD) categories. The HD forests had the lowest canopy cover, lowest density and lowest TBC and the LD had the highest canopy cover, highest density and highest TBC. The MD forests occupied the intermediate position with respect to these parameters. Species richness was least in HD forests, highest in one of the MD forests while LD forest occupied an intermediate position. The percentage of regenerating species was lowest (54%) in HD and highest (72%) in MD. The density of seedlings and saplings was higher in one of the MD forests as compared to HD and LD. We concluded that the moderate disturbances do not affect the vegetation adversely; however the increased degree of disturbance causes loss in plant diversity; affects regeneration and changes community characteristics. Construction of hydroelectric projects at various places in the study area was found to be one of the most important sources of anthropogenic disturbances in addition to the routine anthropogenic disturbances like grazing, fuelwood collection and fodder extraction. If all proposed dams in the Indian Himalaya are constructed combined with weak national environmental impact assessment and implementation, it will result in a significant loss of species. Therefore, various agents of disturbances should be evaluated in cumulative manner and any developmental activities such as hydropower projects, which trigger various natural and anthropogenic disturbances, should be combined with proper cumulative environmental impact assessment and effective implementation to minimise the anticipated loss of vegetation.

En savoir plus